Modeling chiroptical phenomena in lanthanide complexes: from Circularly Polarized Luminescence to Magneto-Chiral Dichroism

Mathieu GASCOIN¹, Maxime GRASSER¹, Grégoire DAVID¹, Boris LE GUENNIC¹

¹Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, Rennes, France

Lanthanide complexes display remarkable optical and magnetic properties arising from the inner-shell character of their 4f orbitals. When chirality is introduced, these features give rise to a range of chiroptical effects with potential applications in sensing [1], anti-counterfeiting [2], and photonic devices [3]. Among them, Circularly Polarized Luminescence (CPL) and Magneto-Chiral Dichroism (MChD) emerge as complementary spectroscopic techniques to probe electronic structure, chirality, and magnetism.

CPL corresponds to the differential emission of left- and right-circularly polarized light by a chiral luminescent system (see Fig. 1a), whereas MChD manifests as a differential absorption of unpolarized light by a chiral system under magnetization (see Fig. 1b [4]). Although quantum chemistry has played a crucial role in understanding the ground-state electronic structure of lanthanide complexes, modeling their luminescence properties remains a major challenge: quantitative agreement with experiment is still lacking for CPL, and theoretical treatments of MChD are still at a preliminary stage.

In this work, we employ advanced wavefunction-based quantum chemistry methods (CASSCF/PT2, SISO) to compute the electronic properties underlying CPL and MChD in chiral lanthanide complexes, and simulate the corresponding spectra using an in-house post-processing code [5]. Comparison with experimental data enables us to evaluate the accuracy of current approaches and to establish a computational protocol tailored to the description of chiroptical properties in lanthanide systems.

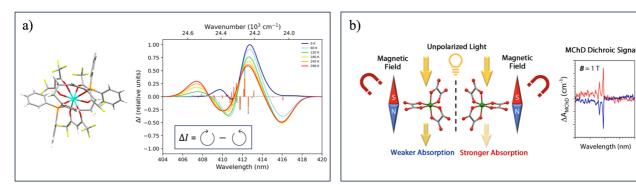


Figure 1: Chiral lanthanide complex (left) and associated simulated CPL spectrum (right). b) Schematic representation of the conditions needed to observe a MChD signal on a chiral molecule (left) and generic MChD dichroic signal (right) [4]

References:

- [1] S. Shuvaev, M. Starck, D. Parker, Responsive, water-soluble europium (III) luminescent probes, Chem. Eur. J., 23, 9974–9989 (2017)
- [2] Y. Kitagawa, S. Wada, M. D. J. Islam, K. Saita, M. Gon, K. Fushimi, K. Tanaka, S. Maeda, Y. Hasegawa, Chiral lanthanide lumino-glass for a circularly polarized light security device, Commun. Chem., 3, 119–1-5 (2020)
- [3] F. Zinna, M. Pasini, F. Galeotti, C. Botta, L. Di Bari, U. Giovanella, Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence, Adv. Funct. Mater., 27, 1603719–1-8 (2017)
- [4] M. Atzori, G. L. J. A. Rikken, C. Train, Magneto-Chiral Dichroism: A Playground for Molecular Chemists, Chem. Eur. J., 26, 9784–9791 (2020)
- [5] M. Grasser, Ab initio calculations of chiroptical properties for lanthanide complexes, PhD Thesis Rennes University (2023)