
Ultrafast probing of isotope-induced explicit symmetry breaking in ethylene

Alessandro Nicola Nardi¹, Alexie Boyer², Yaowei Hu², Vincent Loriot², Frank Lépine², Saikat Nandi², Morgane Vacher¹

Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière UMR5306, F-69100 Villeurbanne, France

Symmetry and symmetry breaking have been known to play a central role in contemporary physics and many of the natural phenomena occur due to the breakdown of symmetry [1,2]. Here, we show how isotope-induced inversion symmetry breaking influences ultrafast photoisomerization processes in ethylene. Extreme ultraviolet pump – near infrared probe time-of-flight mass spectrometry, performed replacing one of the carbon atoms in ethylene with a ¹³C isotope leads to twice-faster structural relaxation in the photo-excited molecular cation. In particular, the ethylene to ethylidene conversion, i.e., the relaxation channel involving the migration of one hydrogen atom from one carbon atom to the other, also identified in previous studies [3], was affected by the isotopic effect. We simulated the quantum-classical non-adiabatic molecular dynamics, using trajectory surface hopping method, and incorporating the nuclear symmetry. Our results suggest that this difference arises from the mixing of different normal modes in the isotope-substituted species, ¹³C-ethylene, compared to the more symmetric unsubstituted or doubly substituted isotopologues. This facilitates efficient intramolecular vibrational energy redistribution, thereby lowering the isomerization yield. These findings offer opportunities to use isotope-induced nuclear symmetry breaking to control the outcome of light-molecule interactions across ultrafast timescales.

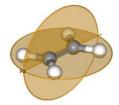


Figure 1. Point group symmetry elements in ethylene and ¹³C-ethylene (left) and ¹³C-ethylene (right). From left to right the symmetry point group changes from D_{2h} to C_{2v}, with the corresponding lowering of the symmetry.

References:

- [1] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957).
- [2] Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964).
- [3] Fransén, L., Tran, T., Nandi, S. & Vacher, M. Dissociation and Isomerization Following Ionization of Ethylene: Insights from Nonadiabatic Dynamics Simulations. *J. Phys. Chem. A* **128**, 1457 (2024).