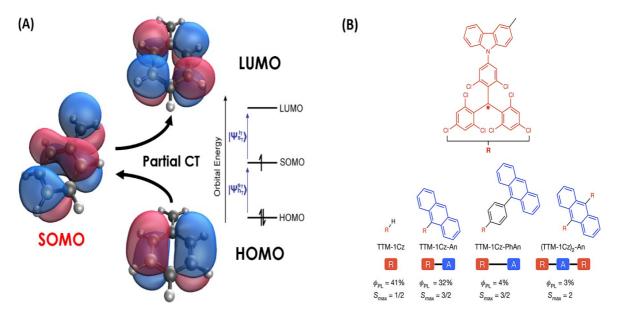
## Investigation of Organic Radicals Electronic Structure: A Multi-Methodological Study


Matteo Fornasarig, 1,2 Danillo Valverde, 1 David Beljonne 2 and Yoann Olivier 1

<sup>1</sup> Laboratory for Computational Modelling of Functional Materials (University of Namur), <sup>2</sup> Laboratory for Chemistry of Novel Materials (University of Mons)

Organic radicals are gaining attention in optoelectronics and quantum information science (QIS), driven by their unique ability to exhibit near-infrared luminescence with a potential 100% internal quantum efficiency (IQE)<sup>1</sup> and access to high spin excited states (S > 1) that satisfy the DiVincenzo criteria for quantum computing.<sup>2</sup> However, modeling the excited states of open-shell systems remains challenging, particularly due to spin contamination issues that arise when single-reference methods, such as TD-DFT, are employed. While several spin-pure methods have been developed in recent years, not all of them adequately capture the nature and energetics of electronic excitations in organic radicals, particularly those involving short-range or partial charge-transfer (CT) character.

To address this, spin-pure multireference approaches like CASSCF could be considered, but dynamic correlation must be incorporated through, for example, second-order perturbation theory corrections (e.g., CASPT2, NEVPT2). While these methods are accurate, they are computationally demanding, and selecting an appropriate active space is non-trivial. More affordable alternatives, such as multiconfigurational pair-density functional theory (MC-pDFT) and its multi-state variants (MC-MS-pDFT)<sup>3</sup>, provide a compromise between cost and accuracy, although they are sensitive to the CAS component used in the exchange–correlation functional. Others promising approach are a machine-learning–parametrized semiempirical method (ExROPPP)<sup>4</sup>, currently in development, as well as a spin-purified extension of TD-DFT (X-TD-DFT), which has shown encouraging results, at least for doublet systems.<sup>5</sup>

Using the benzyl radical as a benchmark and extending the analysis to TTM-based chromophores, we evaluated a range of available spin-pure methods—ExROPPP, X-TD-DFT, CAS-QD-NEVPT2, and MS-MC-pDFT —highlighting their respective strengths and limitations in capturing excited-state character and energetics.



(A) HOMO $\rightarrow$ SOMO and SOMO $\rightarrow$ LUMO short-range partial CT transitions of the benzyl radical. (B) TTM-1Cz derivates that show spin addressable excited states with multiplicity greater than one (S >1), with their PLQE ( $\phi_{PL}$ ) in toluene solution.<sup>2</sup>

## **References:**

- [1] Ai, X., Evans, E.W., Dong, S. et al. Nature, 2018, 563, 536-540.
- [2] Gorgon, S., Lv, K., Grüne, J. et al. Nature, **2023**, 620, 538–544.
- [3] Hennefarth, M. R.; Hermes, M. R.; Truhlar, D. G.; Gagliardi, L. J. Chem. Theory Comput., **2023**, 19 (11), 3172–3183.
- [4] Shen, J.; Walker, L. E.; Ma, K.; Green, J. D.; Bronstein, H.; Butler, K. T.; Hele, T. J. H. arXiv, 2025.
- [5] Cho, E.; Sun, Q.; McBride, E. P.; Brédas, J.-L. ACS Materials Lett. 2025, 7 (4), 1620–1625.