Towards high-throughput screening of 2D materials for high-power batteries

Alia Benmoussa^{1,2}, Isabel A. Silva³, Leonardo J. A. Siqueira³, Mathieu Salanne⁴, Céline Merlet^{1,2}

MXenes, a large family of two-dimensional transition metal carbides and nitrides, have emerged as promising materials for electrochemical energy storage [1]. Mxenes are usually obtained through the exfoliation of MAX phases and have the generic formula $M_nX_{n+1}T_x$ where M is an early transition metal, X is carbon or nitrogen, and T stands for surface termination(s). The vast chemical diversity of MXenes requires a systematic exploration through automated first-principles calculations and multiscale modeling strategies to identify the most suitable materials for energy storage.

A database of 2,784 MXene structures was explored [2] through the implementation of an automated density functional theory (DFT) workflow to generate input files, optimize structures, evaluate atomic charges... The Bader charge analysis conducted reveal a clear influence of the surface terminations (-O, -OH, -F...) on the Bader charges and volumes. This influence seems to be predominant over the impact of the thickness of the MXene or its carbide or nitride nature. Strong differences between core and surface transition metal atoms are also observed.

An ongoing perspective of these calculations is to provide parameters for classical simulations of MXene based energy storage devices using the constant potential approach [3]. Such simulations would allow one to model operating conditions and charge storage mechanisms at electrode/electrolyte interfaces, an important step for evaluating the electrochemical performance of MXenes.

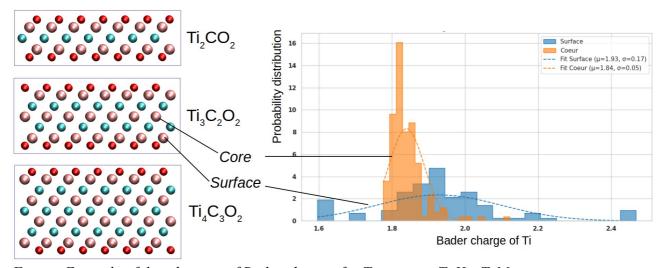


Figure: Example of distributions of Bader charges for Ti atoms in $Ti_nX_{n+1}T_xMx$ enes.

Acknowledgment

This work has benefited from State aid managed by the Agence Nationale de la Recherche under the France 2030 programme, under the reference 'ANR-22-PEBA-0002'.

References:

- [1] Z. Lin, H. Shao, K. Xu, P.-L. Taberna, P. Simon, MXenes as High-Rate Electrodes for Energy Storage, Trends Chem., 2, 654, 2020
- [2] E. Rems, Y.-J. Hu, Y. Gogotsi, R. Dominko, Pivotal role of surface terminations in MXene thermodynamic stability, Chem. Mater., **36**, 10295 (2024)
- [3] A. M. Sampaio, S. Bi, M. Salanne, L. J. A. Siqueira, Molecular dynamics simulations of ionic liquids confined into Mxenes, Energy Storage Mater., **70**, 103502 (2024)

¹CIRIMAT, Université de Toulouse, Toulouse INP, CNRS, 118 Route de Narbonne, 31062 Toulouse cedex 9 - France ²Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, 80039 Amiens, France

³Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, 09913-030, São Paulo, Brazil

⁴Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France